x = QQ['x'].0
for A in load("/sagedatafor2not4or4not8/li4"):
    E=EllipticCurve(A);
    rho=E.galois_representation();
    if E.has_cm()==False and  rho.is_surjective(2):
        F=factor(E.division_polynomial(4));
        l=len([p for p,e in F if p.degree()==6]);
        if l!=0:
            for p,e in F:
                if p.degree()==6:
                    g(x)=p(x/2)*2^6;
                    K.<a>=NumberField(g(x));
                    L.<b>=K.galois_closure();
                    D=L.degree();
                    if D !=48:
                        print E.label(),":", D;
                    
        else:
            print E.label(),"division polynomial does not have a degree 6 factor, so maximum order of galois group is 36, which is not 48";
print 'done';